SOLVING REVERSE TRANSIENT-HEAT-CONDUCTION
PROBLEMS BY ELECTRICAL SIMULATION

V. /E. Prokof'ev UDC 536.2.02:681.332

Devices are described which make it possible to adapt existing models for a continuous-
mode solution of both linear and nonlinear reverse transient-heat~conduction problems
with variable boundary conditions,

In analyzing transient thermal process in turbomachinery, for example, it often becomes necessary
to solve not only forward but also reverse transient-heat-conduction probiems with variable boundary con-
ditions.

According to [1], a reverse transient problem is one where the solution yields the coefficients in the
boundary conditions, the latter being stated in a known form. The given quantities in this case are those
describing the geometry of the body, the thermophysical properties of its material, and the transient tem-
perature distribution at various points in the body including points on its surface.

Since analytical solutions to reverse problems are available only for a few most simple cases, hence
in engineering practice such problems are solved essentially by the Liebmann method with RC networks.
The procedure here is rather laborious, because for each instant of time the answer is sought by iteration
with a manual resetting of the boundary conditions.

Forward transient-heat-conduction problems are nowadays solved widely by the use of electrical
models — RC networks — in a continuous-mode computation process. Such networks are not suited for
solving reverse problems, however, and this limits their application.

We propose here some device by means of which passive RC networks can be adapted for the solution
of reverse transient-heat-conduction problems with variable boundary conditions, in a linear as well as in
a nonlinear situation. The common feature of these devices is that they are designed on the principles of
electronic simulation, As has been shown in [2, 3], the use of electronic devices with passive models does
considerably extend the range of solvable problems.

The analog computer shown schematically in Fig. 1a will calculate the surface density of thermal
flux qg(7) which ensures a given transient temperature distribution in a test object, i.e., will solve on an
RC network the reverse problem with variable boundary conditions of the second kind:

w0 =—i () (1>

This device, like those which will be described here subsequently, represents a closed-loop automatic con-
trol system for the test object simulated by an RC network. The input quantity to this system is a voltage
Ug (1) proportional to the surface temperature of the body Tg(7), which varies with time according to some
given law, and the output quantity from the system is a current I(r) fed to the terminal point of the model.
As is well known, the current in this model is the electrical analog of the thermal flux density.

A function converter (FC,) is used for shaping the voltage Ug(r). This voltage is compared to the
voltage at the terminal point of the model Ur(r) and the mismatch signal

U ) =Ug (v} — U (1)

is applied to the input of the amplifier (DCA) which has a high gain K.
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then further computation will yield the rate of heat transfer o {r) at the body surface:

ds (T) (3)

O = T @

The law according to which the temperature of the medium varies with time, i.e., the function Ty (1)
is assumed to be known here,

In order to cut out the intermediate calculations involved in determining o (), it is worthwhile to
solve reverse problems with variable boundary conditions of the third kind by means of a device shown
schematically in Fig. 1b. This device, while solving Eq. (2) in implicit form, makes it possible to de-
termine o (1) and qg(7) directly. For this purpose, a multiplicator (MULT) and another function converter
(FC,) are added so that a voltage Uy, (1) proportional to Ty, (1) will appear,

As has been noted already, voltage U,(7) at the input to the CCS channel is proportional to qg(r). At
the same time, this voltage is also (see Fig. 1b):

Ua (T) = Ka Uoc (T) [Um(’c) - Us (T)] (4)

It follows from expression (4) that voltage U, () at the multiplicator input is the electrical analog of
the heat-transfer rate o (1), i.e., that

U, (®) =K, o),
where K, =1/K;KaKR.

The devices just described make it possible, by means of RC networks, to solve continuously re-
verse transient-heat-conduction problems in a linear situation, if the thermophysical properties of the ma~
terial A, ¢, v are independent of the temperature.

We will show that the dependence of these thermophysical properties on the temperature can be ac-
counted for in the solution of reverse problems, i.e., that a reverse problem can be solved with such a
model in the nonlinear case too.
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The nonlinear equation of transient heat conduction
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With the aid of these devices, several reverse transient-
heat-conduction problems were solved on the USM~1 model. For
illustration, we show in Table 1 the results of such a solution for
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the case of an asymmetrically heated infinitely large plate, grade EI-607 steell = 0.3 thick, where the rate
of heat transfer at the surfaces under transient conditions has been determined. As starting data we used
those describing the variation of the dimensionless temperature, which had been obtained in {6] in the pro-
cess of an analytical solution of the forward problem. According to this table, the discrepancy between the
results of electrical simulation and of analytical calculations is on the average not greater than 1-2%, which
indicates an agreement between both solutions. '

Thus, a combination of passive networks and devices designed on the principle of electronic simula-
tion makes it possible to considerably extend the applicability of existing models by adapting them for the
solution of forward as well as reverse linear and nonlinear transient-heat-conduction problems with vari-
able boundary conditions.

NOTATION
T is the temperature, °C;
o is the heat-transfer coefficient, W/ m? - deg;
Ag is the thermal conductivity A at T =0, W/ m-deg;
> is the new variable, °C;
c is the specific heat, W/ kg . deg;
v is the density of material, kg/m3;
dg is the thermal flux density at the body surface, W/ m?;
T is the time, h;
U is the voltage, V;
I is the current, A;
K¢ is the conversion factor from T and & to U, V/deg;
KR is the conversion factor from thermal resistance to electrical resistance, QW/m?
- deg;
K, is the conversion factor from a to U,, m?-deg/ A;
Kt is the conversion factor from qg to It, m?/V;
K is the transfer ratio of the DCA (dc amplifier);
K is the transfer coefficient of the CCS (controlled current stabilizer) channel, A/V;
Ka is the transfer coefficient of the MULT (multiplicator), v—;
0y =Tg/T m, is the dimensionless temperature;
Fo =at/1* is the Fourier number;
Bi=ql/A is the Biot number;

Ki=ql/ 7\(Tmz - Ty is the Kirpichev number.
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